EQUILIBRIUM ELECTROCHEMISTRY

NANIK DWI NURHAYATI, S.SI,M.SI

- <u>http://nanikdn.staff.uns.ac.id</u>
- E-mail : nanikdn@uns.ac.id

Electrochemical Cells

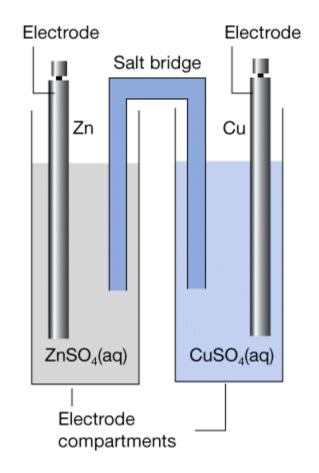
- Electrochemical cell two electrodes in contact with an electrolyte
 - Electrolyte is an ionic conductor (solution, liquid, or solid)
 - Electrode compartment = electrode + electrolyte
 - If electrolytes are different compartments may be connect with salt bridge
 - Electrolyte solution in agar
- Galvanic cell an electrochemical cell that produces electricity
- Electrolytic cell an electrochemical cell in which a non-spontaneous reaction is driven by an external source of current

Types of Electrodes

- `1. Metal/metal ion
 - Designation:M(s)|M⁺(aq)
 - Redox couple: M⁺ /M
 - − Half reaction: $M^+(aq) + 1e^- \rightarrow M(s)$
- 2. Hidrogen (SHE)
 - Designation*:
 - $Pt(s)|X_2(g)|X^+(aq) \text{ or } Pt(s)|X_2(g)|X^-(aq)$
 - Redox couple:

 X^+/X_2 or X_2/X^-

- Half reaction:


 $X^{+}(aq) + 1e^{-} \rightarrow 1/2X_{2}(g) \text{ or } 1/2X_{2}(g) + 1e^{-} \rightarrow X^{-}(aq)$

- 3. Metal/insoluble salt
 - Designation:M(s)|MX(s)|X⁻(aq)
 - Redox couple: MX /M,X⁻
 - Half reaction: $MX(s) + 1e^- \rightarrow M(s) + X^-(aq)$
- 4. Redoxs
 - Designation*: Pt(s) | M⁺(aq), M²⁺(aq)
 - Redox couple: M⁺/M²⁺
 - Half reaction: $M^{2+}(aq) + 1e^{-} \rightarrow M^{+}(aq)$

*Inert metal (Pt) source or sink of e-

Electrochemical cells

- Liquid junction potential: due to the difference in the concentrations of electrolytes.
- The right-hand side electrochemical cell is often expressed as follows: Zn(s)|ZnSO₄(aq)||CuSO₄(aq)|Cu(s)
- The cathode reaction (copper ions being reduced to copper metal) is shown on the right. The double bar (||) represents the salt bridge that separates the two beakers, and the anode reaction is shown on the left: zinc metal is oxidized into zinc ions

Standard Potentials

- Since you can't measure the potential of a single electrode, one pair has been assigned, by convention a potential of 0
 - Standard hydrogen electrode (SHE):

 $Pt(s)|H_2(g)|H^+(aq) E^{\emptyset} = 0$

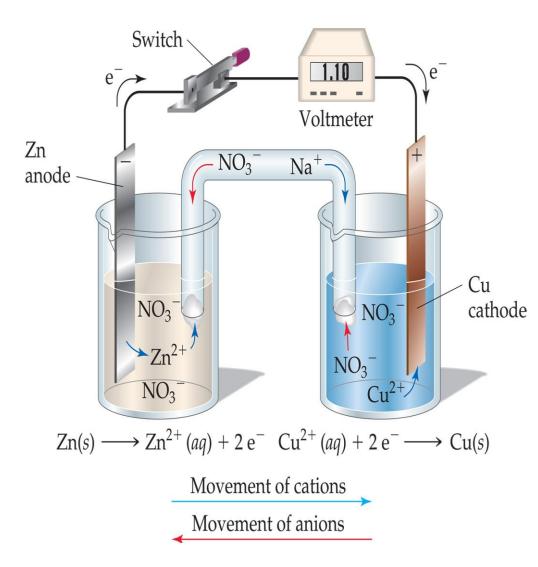
- Other potentials determined by constructing cells in which SHE is left hand electrode:
 - » Silver Chloride|Silver

 $\begin{aligned} \text{Pt(s)}|\text{H}_2(g)|\text{H}^+(aq)||\text{Cl}^-(aq)|\text{AgCl}(s)|\text{Ag} & \text{E}^{\emptyset}(\text{AgCl}, \text{Ag}, \text{Cl}^-) = +0.22\text{V} \\ \text{Reaction: AgCl}(s) + 1/2\text{H}_2(g) \rightarrow \text{Ag}(s) + \text{H}^+(aq) + \text{Cl}^-(aq) \end{aligned}$

▲ Because all potentials are relative to the hydrogen electrode, the reaction is listed without the contribution of the SHE,

$$AgCl(s) \rightarrow Ag(s) + Cl^{-}(aq)$$

Standard Reduction Potentials


Potential (V)	Reduction Half-Reaction	
+2.87	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	
+1.36	$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$	
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	Reduction
+1.06	$\operatorname{Br}_2(l) + 2 e^- \longrightarrow 2 \operatorname{Br}^-(aq)$	potentials for many
+0.96	$NO_3^{-}(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	electrodes have
+0.80	$Ag^+(aq) + e^- \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	been measured
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	and tabulated.
+0.59	$MnO_4^{-}(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^{-}(aq)$	
+0.54	$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	
+0.34	$\operatorname{Cu}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cu}(s)$	
0 [defined]	$2 \operatorname{H}^+(aq) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g)$	
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	
-0.44	$\operatorname{Fe}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Fe}(s)$	
-0.76	$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$	
-0.83	$2 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$	
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$	
-3.05	$\mathrm{Li}^+(aq) + \mathrm{e}^- \longrightarrow \mathrm{Li}(s)$	

Voltaic Cells

- We can use that energy to do work if we make the electrons flow through an external device.
- We call such a setup a voltaic cell.

Voltaic Cells

- A typical cell looks like this.
- The oxidation occurs at the anode.
- The reduction occurs at the cathode.

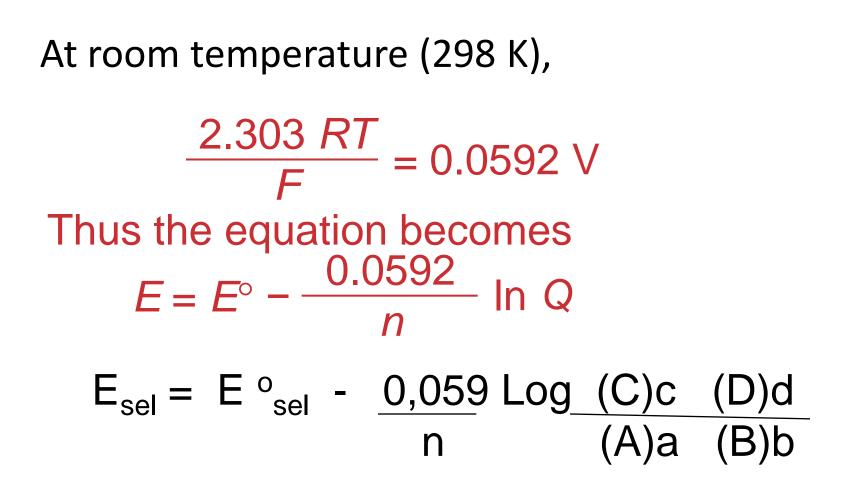
Cell Potential and Free Energy

 ΔG for a redox reaction can be found by using the equation

 $\Delta G = -nFE$ $\Delta G^{\circ} = -nFE^{\circ}$

where *n* is the number of moles of electrons transferred, and *F* is a constant, the Faraday.

1 *F* = 96,485 C/mol = 96,485 J/V-mol


Nernst Equation

Dividing both sides by -nF, we get the Nernst equation:

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

or, using base-10 logarithms, $E = E^{\circ} - \frac{2.303 RT}{nF} \ln Q$

Nernst Equation

Reaction Equilibrium

$$\Delta G = 0, E = 0$$

$$aA + bB \longrightarrow cC + dD$$

$$K = (C)^{c} (D)^{d}$$

$$(A)^{a} (B)^{b} \longrightarrow PCL_{5}$$

$$PCl_{3(g)} + Cl_{2(g)} \Leftrightarrow PCl_{5(g)}$$

$$K = \frac{Ia_{oksidasi}}{[a_{reduksi}]}$$

$$E_{sel} = E_{sel}^{o} - \frac{RT}{nF} \ln K$$

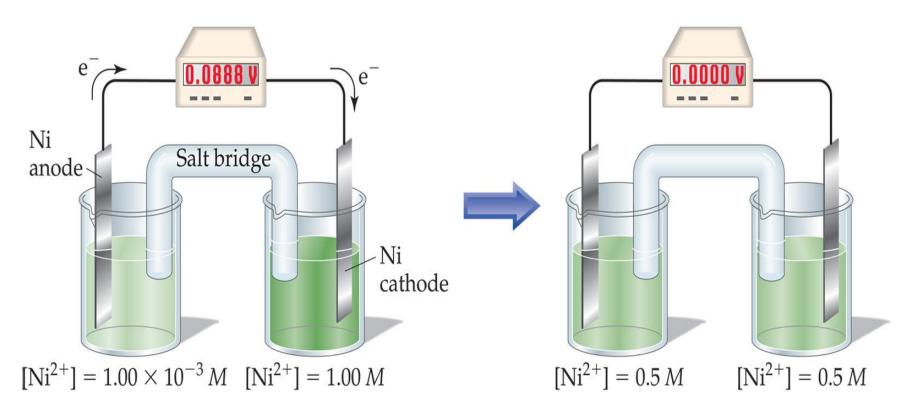
$$E_{sel}^{o} = \frac{RT}{nF} \ln K$$

$$K = e^{\frac{nFE_{sel}^{o}}{RT}}$$

$$E_{sel} = E_{sel}^{o} - \frac{0,059}{n} \log (C)^{c} (D)^{d}$$

$$E_{sel}^{o} = 0,059 \log K$$

$$n$$


• At equilibrium, $\Delta G_{rxn} = 0$

$$\Delta G_{rxn} = \Delta G_{rxn}^o + RT \ln(Q)$$

$$0 = \Delta G^{\circ}_{rxn} + RTIn(K)$$

$$\Delta G^{\circ}_{rxn} = -RTIn(K)$$

Concentration Cells

• Notice that the Nernst equation implies that a cell could be created that has the same substance at both electrodes.

Temperature Dependence of K

• We now have two definitions for ΔG°

$$\Delta G^{\circ}_{rxn} = -RTIn(K) = \Delta H^{\circ} - T\Delta S^{\circ}$$

- Rearranging (dividing by -RT) $\ln(K) = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$ y = m + b
- Plot of ln(K) vs 1/T is a straight line

T Dependence of K (cont.)

• we know the T dependence of K, we can predict K at another temperature:

$$\ln(K_2) = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2}\right) + \frac{\Delta S^{\circ}}{R} \quad - \quad \ln(K_1) = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_1}\right) + \frac{\Delta S^{\circ}}{R}$$

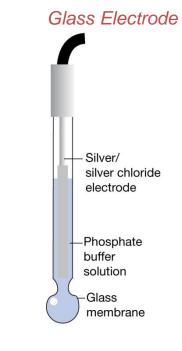
$$\ln\left(\frac{K_2}{K_1}\right) = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

the van't Hoff equation.

Determine pH

• Again concentration is replaced with activity pH = -log A_{H^+} = -log $[H^+]\gamma_{H^+}$

 $pH = - \log [H+]$. $pH = - \log aH +$ $Pt | H_{2(g)} | H^{+}_{(H+)} | | H^{+}_{(std)} | H_{2(g)}$ $H^+ + e^- = \frac{1}{2} H_{2(q)}$ $E^\circ = 0,0000 V$ $E_{sel} = E_{sel}^{\circ} - 0,0591 \log \frac{[oksidasi]}{[reduksi]}$ $E_{sel} = -0,059 \log (H^+)$ $(H^+)_{std}$


pH and pKa

$$H^{+}(aq) + 1e^{-} \rightarrow \frac{1}{2}H_{2}(g) \qquad Q = \frac{(f_{H_{2}}/p^{\emptyset})^{0.5}}{a_{H^{+}}}$$

- For hydrogen electrode (1/2 reaction above), $E^{\phi} = 0$
 - If $f_{H2} = p^{\phi}$, Q = 1/a_{H+} and E = (RT/F) ln(a_{H+})
 - $E = E^{\phi} (RT/nF) \ln Q$
 - Converting In to log (In =2.303log), $E = (RT/F) 2.303log(a_{H+})$
 - Define pH=-loga_H so E = -2.303(RT/F)pH
 - At 25°C, E= -59.16mVpH
- Measurement
 - Direct method: hydrogen electrode + saturated calomel reference electrode (Hg₂Cl₂)
 - At 25°C, pH = (E + E(calomel))/ (-59.16mV)
 - Indirect method:
 - Replace hydrogen electrode with glass electrode sensitive to hydrogen activity (but not permeable to H⁺
 - E(glass) α pH, E(glass) = 0 when pH = 7

рКа

- Since we learned pH = pKa when concentration of acid and conjugate base are equal pKa can be measured directly from pH measurement
- Ion-Selective electrodes related to glass electrode except potentials sensitive to other species (see Box 10.2, p 278)

Pb(s) | Pb²⁺ (jenuh, PbCl₂) || Pb²⁺ (0.05 M) | Pb(s) Esel = 0.015 volt

oxsidation : $Pb(s) \rightarrow Pb^{2+}$ (jenuh, $PbCl_2$) + 2e E[°]sel = 0,13 V Reduction : $Pb^{2+} + 2e \rightarrow Pb(s)$ E[°]sel = - 0,13 V

a = $[Pb^{2+}] = 1.6 \times 10^{-2} M$ $[Cl^{-}] = 2 [Pb^{2+}] = 3.2 \times 10^{-2} M$ $Ksp = [Pb^{2+}][Cl^{-}]^{2}$ $= [1.6 \times 10^{-2}][3.2 \times 10^{-2}]^{2}$ $= 1.6 \times 10^{-5}$

THANK YOU