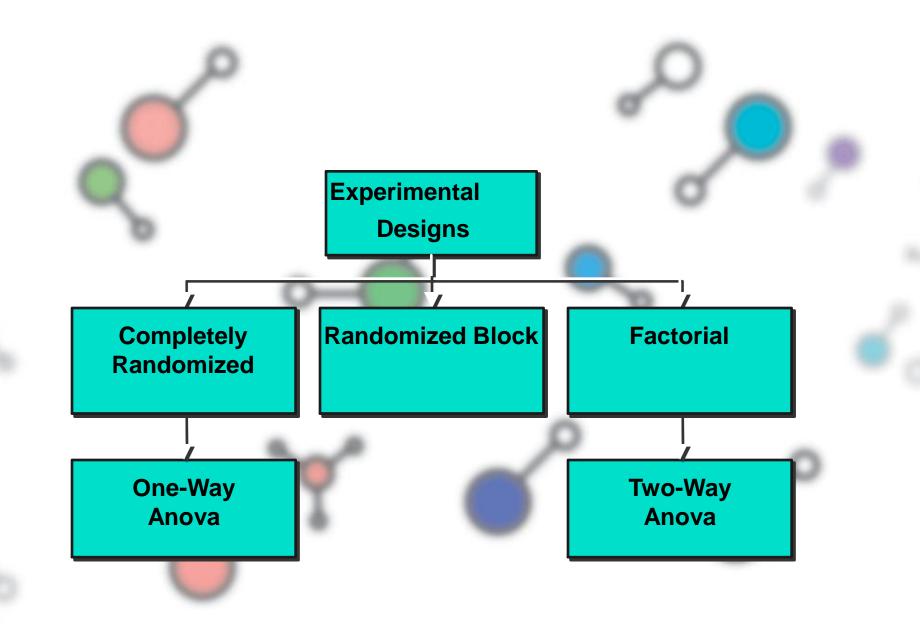


Experiment

- 1. Investigator Controls (Or Observes) One or More Independent Variables
 - Called Treatment Variables or Factors
 - Contain Two or More Levels (Subcategories)
 - Treatments are combinations of factor-levels for the different factors
- 2. Observes Effect on Dependent Variable
 - Response to Levels of Independent Variable
- 3. Experimental Design: Plan Used to Test Hypotheses

Examples of Experiments

- 1. Thirty Stores Are Randomly Assigned 1 of 4 (Levels) Store Displays (Independent Variable) to See the Effect on Sales (Dependent Variable).
- 2. Two Hundred Consumers Are Randomly Assigned 1 of 3 (Levels) Brands of Juice (Independent Variable) to Study Reaction (Dependent Variable).



Completely Randomized Design

1.Experimental Units (Subjects) Are Assigned Randomly to Treatments

Subjects are Assumed Homogeneous

2.One Factor or Independent Variable

2 or More Treatment Levels or Classifications

3.Analyzed by One-Way ANOVA

Randomized Design Example Factor (Training Method)

Factor levels	Level 1	Level 2	Level 3
(Treatments)			
Experimental units	() () ()		
Dependent	21 hrs.	17 hrs.	31 hrs.
variable	27 hrs.	25 hrs.	28 hrs.
(Response)	29 hrs.	20 hrs.	22 hrs.

One-Way ANOVA F-Test Assumptions

1. Randomness & Independence of Errors – Independent Random Samples are Drawn for each condition

2. Normality

 Populations (for each condition) are Normally Distributed

3. Homogeneity of Variance

 Populations (for each condition) have Equal Variances Single Factor Analysis of Variance

one- way or single factor analysis of variance, do you know why? \rightarrow completely randomized design

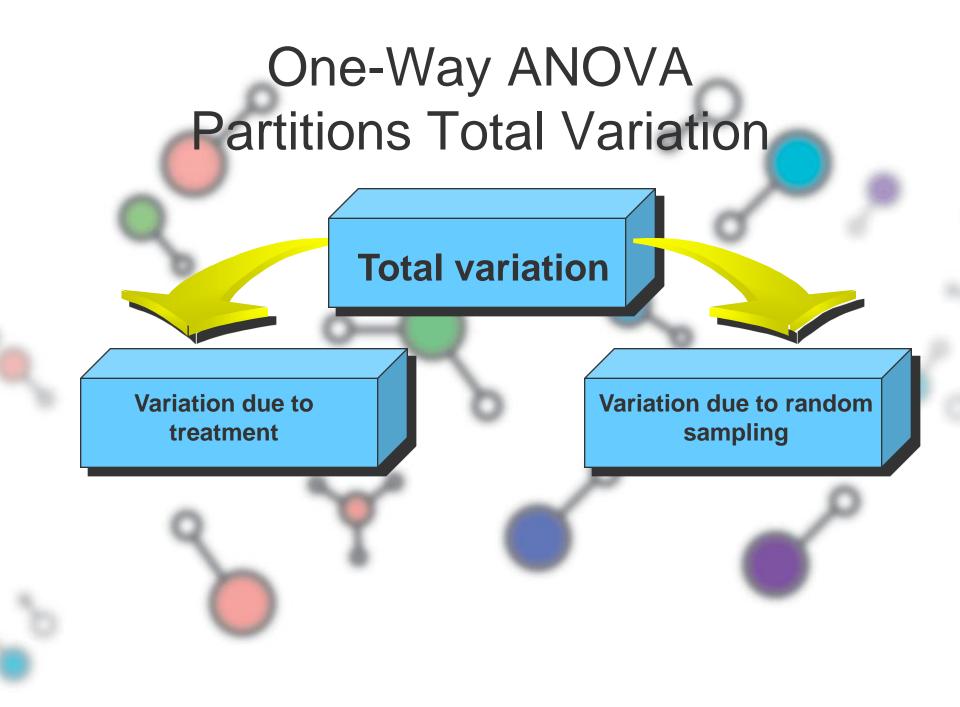
Model :

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij} \begin{cases} i = 1, ..., a \\ j = 1, ..., n \end{cases}$$

Total variation

Total variation

Variation due to treatment



Total variation

Variation due to treatment

Sum of Squares Among Sum of Squares Between Sum of Squares Treatment Among Groups Variation Variation due to random sampling

Total variation

Variation due to treatment

Sum of Squares Among Sum of Squares Between Sum of Squares Treatment (SST) Among Groups Variation Variation due to random sampling

Sum of Squares Within Sum of Squares Error (SSE) Within Groups Variation

 $y_{ij} - \overline{y}_{\bullet\bullet} = \overline{y}_{i\bullet} - \overline{y}_{\bullet\bullet} + y_{ij} - \overline{y}_{i\bullet}$ $\sum_{i=1}^{a} \sum_{j=1}^{n} \left\{ y_{ij} - \overline{y}_{\bullet \bullet} \right\}^{2} = \sum_{i=1}^{a} \sum_{i=1}^{n} \left\{ \overline{y}_{i \bullet} - \overline{y}_{\bullet \bullet} + y_{ij} - \overline{y}_{i \bullet} \right\}$ $\sum_{i=1}^{a} \sum_{j=1}^{n} \left\{ y_{ij} - \overline{y}_{\bullet \bullet} \right\}^{2} = \sum_{i=1}^{a} \sum_{j=1}^{n} \left\{ \overline{y}_{i \bullet} - \overline{y}_{\bullet \bullet} \right\}^{2} + \sum_{i=1}^{a} \sum_{j=1}^{n} \left\{ y_{ij} - \overline{y}_{i \bullet} \right\}^{2}$ SS_T $\overline{SS_S}$ SS_{P}

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{n} \{y_{ij} - \overline{y}_{\bullet\bullet}\}^{2} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y_{\bullet\bullet}^{2}}{N}$$

$$SS_{P} = \sum_{i=1}^{N} \sum_{j=1}^{N} \{ y_{i \bullet} - y_{\bullet \bullet} \} = \sum_{i=1}^{N} \frac{y_{i \bullet}}{n} - \frac{y_{\bullet \bullet}}{N}$$

$$SS_{E} = \sum_{i=1}^{a} \sum_{j=1}^{n} \left\{ y_{ij} - \overline{y}_{i\bullet} \right\}^{2} = JK_{T} - JK_{P}$$

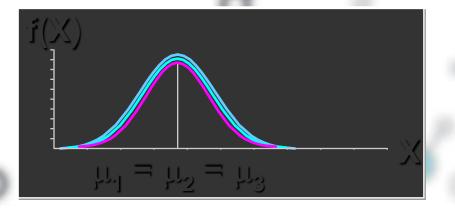
Perlakuan ke-	Obser	vasi			Total	Rata-rata
1	\mathcal{Y}_{11}	${\cal Y}_{12}$		\mathcal{Y}_{1n}	$\mathcal{Y}_{\mathbf{b}}$	$\overline{\mathcal{Y}}_{1}$
2	\mathcal{Y}_{21}	${\cal Y}_{22}$	•••	${\cal Y}_{2n}$	У ₂ .	$\overline{\mathcal{Y}}_{2}$
:	:			-	:	
a	Y al	${\cal Y}_{a2}$		\mathcal{Y}_{an}	Y 2.	$\overline{\mathcal{Y}}_{a*}$
Jumlah					У	\overline{y}

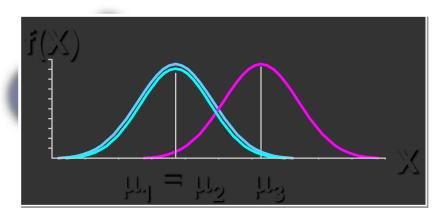
Keterangan: $y_{i\bullet} = \sum_{i=1}^{n} y_{ij}, \quad y_{\bullet\bullet} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}, \quad \overline{y}_{i\bullet} = \frac{y_{i\bullet}}{n}, \quad \overline{y}_{\bullet\bullet} = \frac{y_{\bullet\bullet}}{N}, \quad i = 1, \dots, a$ N = an

100

One-Way ANOVA F-Test Hypothesis

- **1.** H_0 : $\mu_1 = \mu_2 = \mu_3 = ... = \mu_p$
 - All Population Means are Equal
 - No Treatment Effect
- H_a: Not All μ_j Are Equal
 - At Least 1 Pop. Mean is Different
 - Treatment Effect
 - \square NOT $\mu_1 \neq \mu_2 \neq \dots \neq \mu_p$





ii. Take any α iii. Tabel ANOVA 1 Jalan

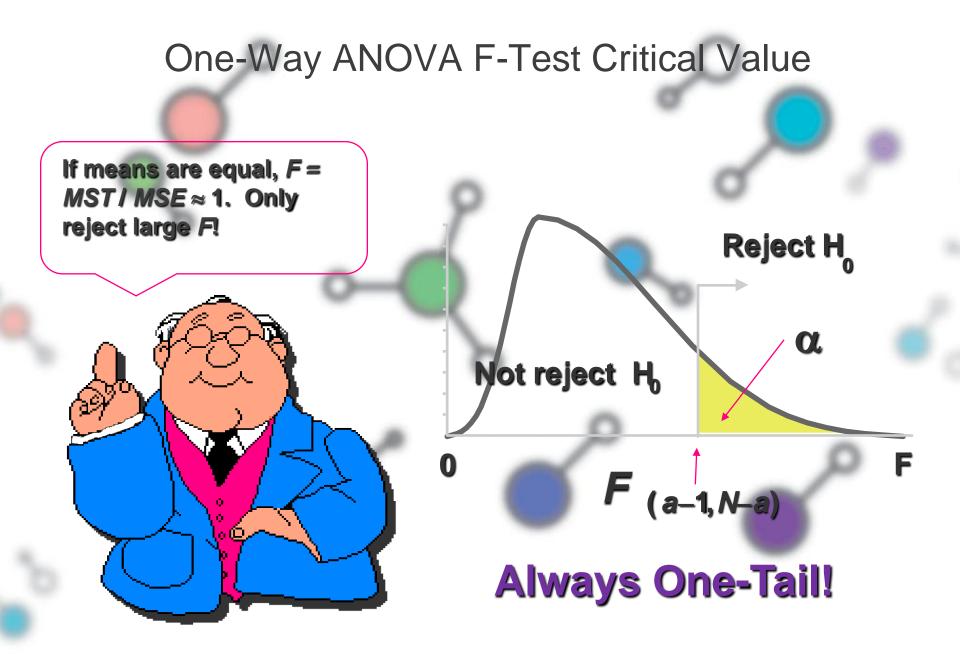
Source of Variance	SS	df	MS	Fo
Treatment	SST	a-1	MSP=SST/(a-1)	Fp=MSP/MSE
Error	SSE	a(n-1)	MSE=SSE/a(n-1)	
Total	SST	an-1		

iv. Critical Region

Reject H_0 If $F_0 > F_{df(treatment),db(error)}$

or

Reject H_0 If Fo > $F_{(a-1),(a(n-1))}$



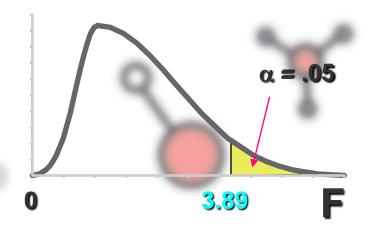
One-Way ANOVA F-Test Example

Mach1Mach2Mach325.4023.4020.0026.3121.8022.2024.1023.5019.7523.7422.7520.6025.1021.6020.40

As production manager, you want to see if 3 filling machines have different mean filling times. You assign 15 similarly trained & experienced workers, 5 per machine, to the machines. At the .05 level, is there a difference in mean filling times?

One-Way ANOVA F-Test Solution

Ho: $\mu_1 = \mu_2 = \mu_3$ Ha: Not All Equal $\alpha = .05$ $\nu_1 = 2 \ \nu_2 = 12$ Critical Value(s):



Test Statistic: $F = \frac{MST}{MSE} = \frac{23.5820}{.9211} = 25.6$

Decision: Reject at α = .05 Conclusion: There Is Evidence Pop. Means Are Different

Sur	nmary Ta	able Sc	olution	
	Degrees of Freedom		Mean Square (Variance)	F
Treatment (Machines)	3 - 1 = 2	47.1640	23.5820	25.60
Error	15 - 3 = 12	11.0532	.9211	مر
Total	15 - 1 = 14	58.2172		

One-Way ANOVA F-Test Thinking Challenge

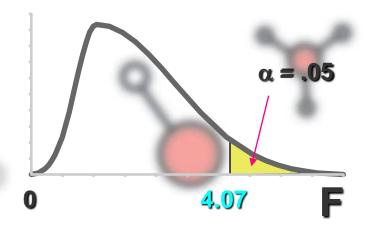
You're a trainer for Microsoft Corp. Is there a difference in mean learning times of 12 people using 4 different training methods ($\alpha = .05$)?

		nmary Ily Con		
Source of Variation	Degrees of Freedom		Mean Square	F
Treatment (Methods)		348		
Error	"""	80		مر
Total				5

One-Way ANOVA F-Test Solution*

Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ Ha: Not All Equal $\alpha = .05$ $\nu_1 = 3$ $\nu_2 = 8$

Critical Value(s):



Test Statistic: $F = \frac{MST}{MSE} = \frac{116}{10} = 11.6$

Decision: Reject at α = .05 Conclusion: There Is Evidence Pop. Means Are Different