Chapter 1 Point Estimation part 1 Methods of Estimation

Qualities of Estimator \rightarrow determined the "best" way

to estimate a population parameter.

 \rightarrow How? unbiasedness, consistency and relative efficiency:

- →An <u>unbiased estimator</u> of a population parameter is an estimator whose expected value is equal to that parameter.
- →An unbiased estimator is said to be <u>consistent</u> if the difference between the estimator and the parameter grows smaller as the sample size grows larger.
- →If there are two unbiased estimators of a parameter, the one whose variance is smaller is said to be <u>relatively efficient</u>.

ESTIMATORS

1. An estimator $\hat{\theta}$ is said to be UNBIASED for the parameter θ if $E |\hat{\theta}| = \theta$

2. If this equality does'nt hold, $\hat{\theta}$ is said to be a BIASED ESTIMATOR of θ with BIAS = $E[\hat{\theta}] - \theta$

Definition

A statistic, $T = l(X_1, X_2, ..., X_n)$ that is used to estimate the value of $\tau(\theta)$ is called an estimator of $\tau(\theta)$, and an observed value of the statistic, $t = l(x_1, x_2, ..., x_n)$ is called an estimate of $\tau(\theta)$

Mostly methods on Point estimation : →Moments →Maximum Likelihood

Review at MathStat 1

 The moment about the origin were defined :

$$\mu'_{j}\left(\hat{\theta}_{1},\hat{\theta}_{2},\ldots,\hat{\theta}_{k}\right) = E\left[X^{j}\right] \quad j = 1,2...,k$$

1. Method of Moment Definition 9.2.1 pg 291

If $X_1, X_2, ..., X_n$ is a random sample from $f(x; \theta_1, ..., \theta_k)$

the first k sample moments are given $M'_{j} = \frac{\sum_{i=1}^{n} X_{i}^{j}}{n}$, j = 1,..,k

In other words

$$M'_{j} = \mu'_{j} \left(\hat{\theta}_{1}, \hat{\theta}_{2}, ..., \hat{\theta}_{k} \right) \quad j = 1, 2..., k$$

Example 9.2.1

A r.V sample from a distribution with two unknown parameters the mean μ and the variance σ^2 then find $\hat{\mu}$ and $\hat{\sigma}^2$

Example 9.2.3

A r.V sample from an exponential distribution, $X_i \sim EXP(\theta)$ then estimate the probability $p(\theta) = P(X \ge 1)$

2. Method of Maximum Likelihood

Definition 9.2.2

The joint density function of *n* random variable $X_1, X_2, ..., X_n$ evaluated at $x_1, x_2, ..., x_n$ say $f(x_1, x_2, ..., x_n; \theta)$ is referred to as Likelihood function.

For fixed $x_1, x_2, ..., x_n$ the likelihood function is a function of θ and often denoted by $L(\theta)$

If $X_1, X_2, ..., X_n$ represent a random sample from $f(x; \theta)$, then $L(\theta) = f(x_1; \theta) \cdots f(x_n; \theta)$

Definition 9.2.3

Let $L(\theta) = f(x_1, ..., x_n; \theta), \theta \in \Omega$, be the joint pdf of $X_1, X_2, ..., X_n$. For given set of observations, $(x_1, x_2, ..., x_n)$ a value $\hat{\theta}$ in Ω at which $L(\theta)$ is a maximum likelihood estimate (MLE) of θ is a value of θ that satisfies $f(x_1, ..., x_n; \hat{\theta}) = \max_{\theta \in \Omega} f(x_1, ..., x_n; \theta)$

Th. Invariance Property

If $\hat{\theta}$ is MLE of θ and if $u(\theta)$ is a function of θ then $u(\hat{\theta})$ is an MLE of $u(\theta)$

If
$$\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k)$$
 denotes the MLE of $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
then the MLE of $\tau = (\tau_1(\theta), \tau_2(\theta), \dots, \tau_r(\theta))$ is
 $\hat{\tau} = (\hat{\tau}_1, \hat{\tau}_2, \dots, \hat{\tau}_r) = (\hat{\tau}_1(\theta), \hat{\tau}_2(\theta), \dots, \hat{\tau}_r(\theta))$ for $1 \le r \le k$

Example

1. If $X_i \sim POI(\theta)$ then find $\hat{\theta}$ 2. If $X_i \sim EXP(\theta)$ then find $\hat{\theta}$ 3. If $X_i \sim N(\mu, \sigma^2)$ then find $\hat{\mu}, \hat{\sigma}^2$