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Binary puzzle is a sudoku-like puzzle with values in each cell taken from the
set {0,1}. We look at the mathematical theory behind it. A solved binary puzzle is
an n×n (n even) binary array that satisfies the following conditions:

1. No three consecutive ones and also no three consecutive zeros in each row
and each column,

2. Every row and column is balanced, that is the number of ones and zeros must
be equal in each row and in each column,

3. Every two rows and every two columns must be distinct.
Figure ?? is an example of initial setting of a binary puzzle. There is only

one solution satisfying all three conditions which can be seen in Figure ??. Binary
puzzles can be seen as constrained arrays [?]. One can also see this array from an
erasure correcting point of view [?].

This paper focuses on solving binary puzzles. Solving binary puzzle is proven
to be an NP-complete problem[?]. We devise and compare three approaches for
finding its solution. The first solves straightforwardly by means of exhaustive
search. The second idea, transforms the problem into a SAT problem, then we
solve using a SAT solver. The third approach construct a set of polynomial equa-
tions over F2 representing the three conditions for a solved binary puzzle. The
variables in the system of equations correspond to all cells in the puzzle. Hence

Figure 1: Unsolved Puzzle Figure 2: Solved Puzzle
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the solution for the equation system is a solution for the puzzle and it can be ob-
tained by computing its Gröbner basis.

From a complexity point of view, solving the puzzle straightforwardly is more
efficient in terms of execution time. The comparison between the three methods in
solving the puzzle of various sizes is given in the Table ??. All the computation is
done in SageMath 7.0.

Table 1: Comparison of execution time (in seconds) for each method.

Size SAT Goebner basis Exhaustive search
Pre-comp. Solver Pre-comp. Solver

4×4 0.01 0.05 0.02 0.05 0.01
6×6 0.14 0.26 0.11 0.06 0.16
8×8 1.58 2.20 0.53 0.13 0.12

10×10 12.31 16.45 3.30 8.69 0.48
12×12 85.43 107.80 47.80 4.55 3.89
14×14 - - - - 94.32
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