
List of Algorithm in Exhaustive search

Putranto

July 22, 2016

Algorithm 1: Hamming distance between two vector (hamdist)

Input: vector u and v (same length)
Output: hamming distance of u and v

Algorithm 2: Check for three consecutive 1’s (cekcons1)

Input: a binary vector v
1 n← length(v);
2 for i← 0 to n− 2 do
3 t← [vi, vi+1, vi+2] if sum(t) = 3 then
4 return true

5 else
6 return false

Algorithm 3: Check for three consecutive 0’s (cekcons0)

Input: a binary vector v
1 n← length(v);
2 for i← 0 to n− 2 do
3 t← [vi, vi+1, vi+2] if sum(t) = 0 then
4 return true

5 else
6 return false

1

Algorithm 4: Check for balancedness of a vector (isbalance)

Input: binary vector v
1 n1← number of 1’s in v;
2 n0← number of 0’s in v;
3 if n1 = n0 then
4 return true ;
5 else
6 return false ;

Algorithm 5: Check for similarity of two vector (isidentic)

Input: two vector with same length: u, v
1 if u = v then
2 return true

3 else
4 return false

Algorithm 6: Check rows for 1st and 3rd constraint satisability
(checkforconsrow)

Input: matrix A
1 for a in rows of A do
2 if cekcons0(a) = true or cekcons1(a) = true or isbalance(a) =

false then
3 return false

4 return true

Algorithm 7: Check a matrix for 1st and 3rd constraint satisability
(checkforcons)

Input: a matrix A representing binary puzzle
1 if checkforconsrow(A) = false or checkforconsrow(Aᵀ) = false

then
2 return false

3 else
4 return true

2

Algorithm 8: Forced move for columns w.r.t. 3rd constraint
(partdistinctrow)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 for a in rows of A do
2 n1 ← number of 1’s in a ;
3 n0 ← number of 0’s in a ;
4 nblank ← number of blanks in a ;
5 if nblank = 2 and n1 = n2 then
6 for b in rows in A \ a do
7 if hamdist(a, b) = 2 then

8 aiblank
← bi ; /* replace blank cell ai */

Algorithm 9: Iteratively forced move for matrix w.r.t. 3rd constraint
(partdistinct)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 B ← partdistinctrow(A);
2 Bᵀ ← partdistinctrow(Bᵀ);
3 if B = A then
4 return B
5 else
6 partdistinct(B)

Algorithm 10: Forced move a vector w.r.t. 2nd constraint (partbal)

Input: a vector v with even length.
1 n0 ← number of 0’s in v ;
2 nblank ← number of blanks in a ;
3 m← length(v)/2;
4 if nblank = 1 then
5 if n0 = m then
6 viblank

= 1
7 else
8 viblank

= 0

9 return v

3

Algorithm 11: Forced move a matrix w.r.t. 2nd constraint (fill2cons)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 for a in rows of A do
2 partbal (a)

3 for a in columns of A do
4 partbal (a)

Algorithm 12: Forced move a matrix w.r.t. 2nd constraint (fill2consB)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 B ← fill2cons(A) ;
2 if B = A then
3 return B
4 else
5 return fill2consB(B)

Algorithm 13: Forced move a vector w.r.t. 1st constraint (partnocons)

Input: a vector v with length 3
1 n1 ← number of 1’s in v ;
2 n0 ← number of 0’s in v ;
3 nblank ← number of blanks in v ;
4 if nblank = 1 and n1 = 2 then
5 viblank

= 0
6 else if nblank = 1 and n0 = 2 then
7 viblank

= 1

Algorithm 14: Forced move a matrix w.r.t. 1st constraint (fill1cons)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 nr ← number of rows in A ;
2 nc← number of columns in A ;
3 for a in rows of A do
4 for i in [0 · · ·nc− 3] do
5 partnocons([a[i], a[i + 1], a[i + 2]])

6 for a in columns of A do
7 for i in [0 · · ·nr − 3] do
8 partnocons([a[i], a[i + 1], a[i + 2]])

4

Algorithm 15: Forced move w.r.t. 1st constraint (fill1consB)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 B ← fill1cons(A) ;
2 if B = A then
3 return B
4 else
5 return fill1consB(B)

Algorithm 16: Forced move w.r.t. all constraint (solvepart1)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 B = fill1consB(A) ;
2 B = fill2consB(B) ;
3 B = partdistinct(B) ;
4 if B = A then
5 return (B)
6 else
7 return (solvepart1(A1))

Algorithm 17: Wrapper for puzzle guessing (solvepart2)

Input: a matrix A representing binary puzzle, history of changed cell,
guess counter

1 Fill a blank cell in A with either 0 or 1 ;
2 B ← solvepart1(A) ;
3 guess counter+ = 1;
4 history of changed cellguess counter ←list of changed and guessed cells;
5 return B, history of changed cell, guess counter

5

Algorithm 18: Wrapper for binario solver (solvepuzzle)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 B ← solvepart1(A) ; /* Try to solve using forced move. */

2 guess list← [] ;
3 nblank ←number of blank in B;
4 guess counter ← 0 ;
5 history of changed cell← {} ;
6 if B does not satisfy all the constraint then
7 return A is invalid puzzle

8 while nblank 6= 0 do
9 B, history of changed cell, guess counter ←

solvepart2(B, history of changed cell, guess counter) ;
10 if B does not satisfy all the constraint then
11 guess counter− = 1;
12 while guess counter in guess list do
13 remove guess counter from guess list ;
14 guess counter− = 1;
15 if guess counter = 0 then
16 return A is invalid puzzle

17 revert back to condition at guess counter ;
18 append(guess counter) to guess list

19 return B

6

